题面

题目链接

大秦 为你打开 题目传送门

备用题面

给定一颗 $N$ 个节点的树,结点从 $1$ 到 $N$ 编号。

现在要计算对于每个结点 $i$ ,到它最远的结点是多少距离。

思路

显而易见的,树上最远的点对是树的直径的两个端点。而学过小学数学的人都知道,从 $i$ 点出发,经过最远的一条链的一部分,最后到达这条最远链的两个端点之一一定是最长的。

代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
/**
* @file P2386C.cpp
* @author Zhoumouren
* @brief
* @version 0.1
* @date 2024-08-22
*
* @copyright Copyright (c) 2024

As All We know ,,,
the maximum distance form a node i is the two side of the diameter of tree...

*/

#pragma GCC optimize(2)
#pragma GCC optimize(3, "Ofast", "inline")
#include<bits/stdc++.h>
using namespace std;

typedef long long ll;
typedef __int128 int128;

namespace FastIO
{
char buf[1 << 20], *p1, *p2;
#define getchar() (p1 == p2 && (p2 = (p1 = buf) + fread(buf, 1, 1 << 20, stdin), p1 == p2) ? EOF : *p1++)
template<typename T> inline T read(T& x) {
x = 0;
int f = 1;
char ch;
while (!isdigit(ch = getchar())) if (ch == '-') f = -1;
while (isdigit(ch)) x = (x << 1) + (x << 3) + (ch ^ 48), ch = getchar();
x *= f;
return x;
}
template<typename T, typename... Args> inline void read(T& x, Args &...x_) {
read(x);
read(x_...);
return;
}
inline ll read() {
ll x;
read(x);
return x;
}
inline void read(char *s) {
scanf("%s", s + 1);
}
};
using namespace FastIO;

const int N = 1e4 + 10;

struct Edge {
int to, nt, wt;
Edge() {}
Edge(int to, int nt, int wt) : to(to), nt(nt), wt(wt) {}
}e[N << 1];
int hd[N], cnte;
void AddEdge(int u, int v, int w) {
e[++cnte] = Edge(v, hd[u], w);
hd[u] = cnte;
}

int n;

inline void Input() {
read(n);
int u, w;
for(int i = 1; i < n; i++) {
read(u, w);
AddEdge(u, i + 1, w);
AddEdge(i + 1, u, w);
}
}

int dis[N][2];
int cur;

inline void Dfs(int u, int fa) {
for(int i = hd[u]; i ; i = e[i].nt) {
int v = e[i].to;
if(v == fa) continue;
dis[v][cur] = dis[u][cur] + e[i].wt;
Dfs(v, u);
}
}

inline void Work() {
cur = 0;
Dfs(1, 1);
int mx = 0, du, dv;
for(int i = 1; i <= n; i++) {
if(mx < dis[i][cur]) {
mx = dis[i][cur];
du = i;
}
dis[i][cur] = 0;
}
Dfs(du, du);
mx = 0;
for(int i = 1; i <= n; i++) {
if(mx < dis[i][cur]) {
mx = dis[i][cur];
dv = i;
}
}
cur = 1;
Dfs(dv, dv);
for(int i = 1; i <= n; i++) {
printf("%d\n", max(dis[i][0], dis[i][1]));
}
}

int main() {
int T = 1;
while(T--) {
Input();
Work();
}
return 0;
}