题面

题目链接

大秦 为你打开 题目传送门

备用题面

给定一个 $N$ 个顶点,$M$ 条边的无向连通图,顶点从 $1$ 到 $N$ 编号。

问至少要添加几条边,才能使其变为双连通图。

思路

这道题目不难想到缩点以后,找到度为 $1$ 的点(因为这样一切就断了)然后这样点的个数我们要把他们连到一起,答案就是这样点的数量除以二去上底。

代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
#pragma GCC optimize(2)
#pragma GCC optimize(3, "Ofast", "inline")
#include<bits/stdc++.h>
using namespace std;

typedef long long ll;
typedef __int128 int128;

namespace FastIO
{
char buf[1 << 20], *p1, *p2;
#define getchar() (p1 == p2 && (p2 = (p1 = buf) + fread(buf, 1, 1 << 20, stdin), p1 == p2) ? EOF : *p1++)
template<typename T> inline T read(T& x) {
x = 0;
int f = 1;
char ch;
while (!isdigit(ch = getchar())) if (ch == '-') f = -1;
while (isdigit(ch)) x = (x << 1) + (x << 3) + (ch ^ 48), ch = getchar();
x *= f;
return x;
}
template<typename T, typename... Args> inline void read(T& x, Args &...x_) {
read(x);
read(x_...);
return;
}
inline ll read() {
ll x;
read(x);
return x;
}
inline void read(char *s) {
scanf("%s", s + 1);
}
};
using namespace FastIO;

const int N = 1010;
const int M = 2010;

class Graph {
private :
struct Edge {
int to, nt, wt;
Edge() {}
Edge(int to, int nt, int wt) : to(to), nt(nt), wt(wt) {}
}e[M];
int hd[N], cnte;
public :
void AddEdge(int u, int v, int w = 0) {
e[++cnte] = Edge(v, hd[u], w);
hd[u] = cnte;
}
int head(int u) { return hd[u]; }
int nt(int u) { return e[u].nt; }
int to(int u) { return e[u].to; }
int wt(int u) { return e[u].wt; }
};

int n, m;
Graph e;
int uid[M], vid[M];

inline void Input() {
read(n, m);
int u, v;
for(int i = 1; i <= m; i++) {
read(uid[i], vid[i]);
e.AddEdge(uid[i], vid[i]);
e.AddEdge(vid[i], uid[i]);
}
}

int low[N], dfn[N], cntd;
int vis[N];
stack<int >st;
int cl[N], cntc;

int inD[N];

inline void Tarjan(int u, int fa) {
vis[u] = 1;
low[u] = dfn[u] = ++cntd;
st.push(u);
for(int i = e.head(u); i ; i = e.nt(i)) {
int v = e.to(i);
if(v == fa) continue;
if(!dfn[v]) {
Tarjan(v, u);
low[u] = min(low[u], low[v]);
} else if(vis[v]) {
low[u] = min(low[u], dfn[v]);
}
}
if(dfn[u] == low[u]){
int v = 0;
++cntc;
while(u != v) {
v = st.top(); st.pop();
cl[v] = cntc;
vis[v] = 0;
}
}
}

inline void Work() {
Tarjan(1, 1);
for(int i = 1; i <= m; i++) {
if(cl[uid[i]] != cl[vid[i]]) {
// cout << uid[i] << ' ' << vid[i] << endl;
inD[cl[uid[i]]]++;
inD[cl[vid[i]]]++;
}
}
int ans = 0;
for(int i = 1; i <= cntc; i++) {
// cout << inD[i] << ' ';
if(inD[i] == 1) ans++;
}
// cout <<endl;
printf("%d", ans + 1 >> 1);
}

int main() {
int T = 1;
while(T--) {
Input();
Work();
}
return 0;
}