题面

题目链接

大秦 为你打开 题目传送门

备用题面

将 $N$ 到 $M$ 的数字依次写在一张纸上,问出现多少个 $0$ 。

思路

就是一道数位DP板子题,不想说话了。

代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
// #pragma GCC optimize(2)
// #pragma GCC optimize(3, "Ofast", "inline")
#include<bits/stdc++.h>
using namespace std;

typedef long long ll;
typedef __int128 int128;

namespace FastIO
{
// char buf[1 << 20], *p1, *p2;
// #define getchar() (p1 == p2 && (p2 = (p1 = buf) + fread(buf, 1, 1 << 20, stdin), p1 == p2) ? EOF : *p1++)
template<typename T> inline T read(T& x) {
x = 0;
int f = 1;
char ch;
while (!isdigit(ch = getchar())) if (ch == '-') f = -1;
while (isdigit(ch)) x = (x << 1) + (x << 3) + (ch ^ 48), ch = getchar();
x *= f;
return x;
}
template<typename T, typename... Args> inline void read(T& x, Args &...x_) {
read(x);
read(x_...);
return;
}
inline ll read() {
ll x;
read(x);
return x;
}
};
using namespace FastIO;

ll n, m;

int a[110];
ll dp[110][110];

inline void Input() {
read(n, m);
}

inline ll Dfs(int len, int lim, int top, int sum) {
if(len == 0) {
if(top) return 1;
return sum;
}
if(!lim && !top && dp[len][sum] != -1) return dp[len][sum];
int mx = lim ? a[len] : 9;
ll ans = 0;
for(int i = 0; i <= mx; i++) {
ans += Dfs(
len - 1,
lim && i == mx,
top && i == 0,
top ? 0 : sum + (i == 0)
);
}
if(!lim && !top) dp[len][sum] = ans;
return ans;
}

inline ll Calc(ll x) {
if(x < 0) return 0;
int len = 0;
while(x) {
a[++len] = x % 10;
x /= 10;
}
return Dfs(len, 1, 1, 0);
}

inline void Work() {
memset(dp, -1, sizeof(dp));
printf("%lld", Calc(m) - Calc(n - 1));
}

int main() {
int T = 1;
while(T--) {
Input();
Work();
}
return 0;
}