题面:不互质的数

大秦 为你打开 题目传送门

备用题面

看不了题目的看下面喵!

求 $1\sim N-1$ 中与 $N$ 不互质的数的和并对 $1e9+7$ 取模。

思路

注意到 $k$ 与 $N$ 互质时,$N-k$ 也与 $N$ 互质,满足对称性,则利用类似等差数列求和的思路,可得 $n\times \varphi(n)/2$ 就是与 $N$ 互质的数的和,从总量减去即可。

代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
#include<bits/stdc++.h>
using namespace std;

typedef long long ll;
// typedef __int128 int128;
typedef pair<int , int > pii;
typedef unsigned long long ull;

namespace FastIO
{
// char buf[1 << 20], *p1, *p2;
// #define getchar() (p1 == p2 && (p2 = (p1 = buf) + fread(buf, 1, 1 << 20, stdin), p1 == p2) ? EOF : *p1++)
template<typename T> inline T read(T& x) {
x = 0;
int f = 1;
char ch;
while (!isdigit(ch = getchar())) if (ch == '-') f = -1;
while (isdigit(ch)) x = (x << 1) + (x << 3) + (ch ^ 48), ch = getchar();
x *= f;
return x;
}
template<typename T, typename... Args> inline void read(T& x, Args &...x_) {
read(x);
read(x_...);
return;
}
inline ll read() {
ll x;
read(x);
return x;
}
};
using namespace FastIO;

const int P = 1000000007;

ll n;

inline void Input() {
read(n);
if(n == 0) return exit(0);
}

inline void Work() {
if(n == 1) {
printf("0\n");
return ;
}
ll phi = n, m = n;
for(ll i = 2; i * i <= n; i++) {
if(n % i == 0) {
phi = phi / i * (i - 1);
while(n % i == 0) n /= i;
}
}
if(n > 1) phi = phi / n * (n - 1);
printf("%lld\n", ((m * (m - 1) / 2) - (phi * m / 2)) % P);
}

int main() {
int T = -1;
while(T--) {
Input();
Work();
}
return 0;
}