A - Another String Minimization 问题

B - Making Towers

很显然两个间隔为偶数的相同数字可以连在一起

C - Qpwoeirut And The City

奇数显然。偶数可以认为是选择一个偶数前缀和奇数后缀,结束了。

D - Chopping Carrots

不难想到枚举最小值然后二分 check,然后优化就是把最小值整除分块。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
#include<bits/stdc++.h>
using namespace std;

typedef long long ll;
typedef pair<int , int > pii;
typedef unsigned long long ull;

namespace FastIO
{
template<typename T> inline T read(T& x) {
x = 0;
int f = 1;
char ch;
while (!isdigit(ch = getchar())) if (ch == '-') f = -1;
while (isdigit(ch)) x = (x << 1) + (x << 3) + (ch ^ 48), ch = getchar();
x *= f;
return x;
}
template<typename T, typename... Args> inline void read(T& x, Args &...x_) {
read(x);
read(x_...);
return;
}
inline ll read() {
ll x;
read(x);
return x;
}
};
using namespace FastIO;

const int N = 1e5+10;

int a[N], te[N], mxn[N];
int n, k;

inline int get(int l, int n) {
return n / (n / l);
}

inline void Input() {
read(n, k);
for(int i = 1; i <= n; i++) {
read(a[i]);
}
}

inline void Work() {
for(int i = 1; i <= n; i++) mxn[i] = 0;
int mx = 0;
for(int i = 1; i <= n; i++) {
int tot = 0;
for(int l = 1, r = 0; l <= min(k, a[i]); l = r + 1) {
r = get(l, a[i]);
te[++tot] = a[i] / l;
}
if(k > a[i]) te[++tot] = 0;
reverse(te + 1, te + 1 + tot);
mx = max(mx, te[1]);
te[tot + 1] = 1e9;
for(int j = 1; j <= tot; j++) {
mxn[te[j]] = max(mxn[te[j]], te[j+1]);
}
}
int ans = 1e9;
for(int i = 0; i <= 100000; i++) {
ans = min(ans, mx - i);
mx = max(mx, mxn[i]);
}
printf("%d\n", ans);
}

int main() {
int T = read();
while(T--) {
Input();
Work();
}
return 0;
}

E - Qpwoeirut and Vertices

这个是 Kruskal 重构树的模板题,我会单独写一篇来讲 Kruskal 重构树的。