题面

题目链接

大秦 为你打开 题目传送门

题目翻译

给一棵n个节点的树, 节点编号为1~n。

树上的结点要么是黑色,要么是白色,每次可以把连通的一种颜色变成另一种颜色。求至少要多少次,才能是整棵树变为一种颜色。

思路

不难发现,如果我们把两个相邻的点是否相同作为边权,这道题目其实就是求出这棵树的直径上有多少种成对的不同的颜色。

代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
/**
* @file CF734E.cpp
* @author Zhoumouren
* @brief
* @version 0.1
* @date 2024-08-22
*
* @copyright Copyright (c) 2024

easy , just count the different color's pair on the diameter of tree.

*/

#pragma GCC optimize(2)
#pragma GCC optimize(3, "Ofast", "inline")
#include<bits/stdc++.h>
using namespace std;

typedef long long ll;
typedef __int128 int128;

namespace FastIO
{
char buf[1 << 20], *p1, *p2;
#define getchar() (p1 == p2 && (p2 = (p1 = buf) + fread(buf, 1, 1 << 20, stdin), p1 == p2) ? EOF : *p1++)
template<typename T> inline T read(T& x) {
x = 0;
int f = 1;
char ch;
while (!isdigit(ch = getchar())) if (ch == '-') f = -1;
while (isdigit(ch)) x = (x << 1) + (x << 3) + (ch ^ 48), ch = getchar();
x *= f;
return x;
}
template<typename T, typename... Args> inline void read(T& x, Args &...x_) {
read(x);
read(x_...);
return;
}
inline ll read() {
ll x;
read(x);
return x;
}
inline void read(char *s) {
scanf("%s", s + 1);
}
};
using namespace FastIO;

const int N = 2e5 + 10;

struct Edge {
int to, nt, wt;
Edge() {}
Edge(int to, int nt, int wt) : to(to), nt(nt), wt(wt) {}
}e[N << 1];
int hd[N], cnte;
inline void AddEdge(int u, int v, int w) {
e[++cnte] = Edge(v, hd[u], w);
hd[u] = cnte;
}

int n;
int c[N];

inline void Input() {
read(n);
for(int i = 1; i <= n; i++) {
read(c[i]);
}
int u, v;
for(int i = 1; i < n; i++) {
read(u, v);
AddEdge(u, v, c[u] != c[v]);
AddEdge(v, u, c[v] != c[u]);
}
}

int dis[N];

inline void Dfs(int u, int fa) {
for(int i = hd[u]; i; i = e[i].nt) {
int v = e[i].to;
if(v == fa) continue;
dis[u] = dis[v] + e[i].wt;
Dfs(v, u);
}
}

inline void Work() {
Dfs(1, 1);
int mx = 0, dx, dy;
for(int i = 1; i <= n; i++) {
if(mx < dis[i]) mx = dis[i], dx = i;
}
memset(dis, 0, sizeof(dis));
Dfs(dx, dx);
mx = 0;
for(int i = 1; i <= n; i++) {
if(mx < dis[i]) mx = dis[i], dy = i;
}
printf("%d", (mx + 1) / 2);
}

int main() {
int T = 1;
while(T--) {
Input();
Work();
}
return 0;
}